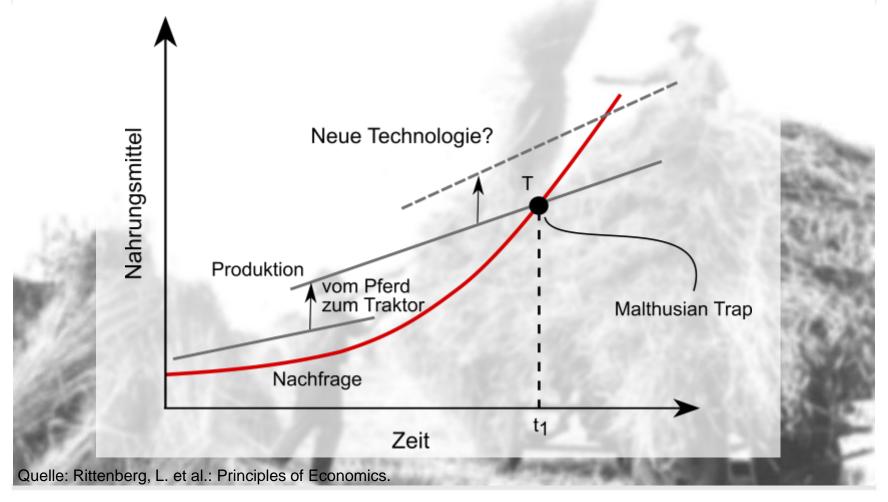
Wird Xaver die Welt ernähren?

Potentiale autonomer Feldroboter


VDI-Seminar Landtechnik, Weihenstephan, 25.01.2018

Dipl.-Ing. Thiemo Buchner, Project Lead Fendt Robotics

Muss Xaver die Welt ernähren?

Potential für die Robotik

Agenda

- 1 Motivation
- 2 Konzept
- 3 Ergebnisse
- 4 Ausblick

Roboterschwärme für die Präzisionsaussaat

TABLET

Perspektivwechsel als Chance

Vielzahl statt Größe

 Das bisherige Größenwachstum landtechnischer Maschinen und Geräte ist begrenzt.

Pflanzenbau statt Maschinenbau

 Für Nachhaltigkeit und Ertragswachstum, müssen die agronomischen Anforderungen im Mittelpunkt stehen.

Einfachheit statt Komplexität

 Autonomie robust und sicher umsetzen. Ohne teure Sensorik, komplexe Algorithmen, logistische Einschränkungen.

Kundenvorteile

Effizienz

Ähnliche Leistung mit weniger Energie.

Entlastung des Landwirts.

Leistung

24/7 Betriebsmodus. Größeres Saatfenster.

Skalierbare Flächenleistung.

Komfort

Einfache Logistik.

Autonomer Betrieb.

Sicherheit

Harmloses Gewicht.

Geringe Antriebsleistung.

Zuverlässigkeit

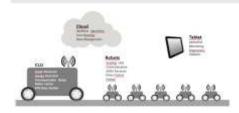
Redundante Einheiten.

Einfacher Service.

Nachhaltigkeit

Reduzierte Bodenverdichtung.

Kein Geräusch. Energie vom Hof.



Agenda

- 1 Motivation
- 2 Konzept
- 3 Ergebnisse
- 4 Ausblick

Der Grundstein: Forschungsprojekt MARS

05/2015 Kick-Off Forschungsprojekt MARS

06/2015 Mock-Up und erste Saatversuche

02/2016 Erster Prototyp mit kompakter Saateinheit

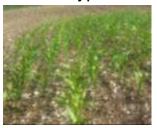
06/2016 Feldtests mit Cloud, Pfadplanung und GPS

10/2016 Projektabschluss

- 2 Roboter
- App
- Cloud
- Pfadplanung
- Autonome
 Aussaat

2015

2016

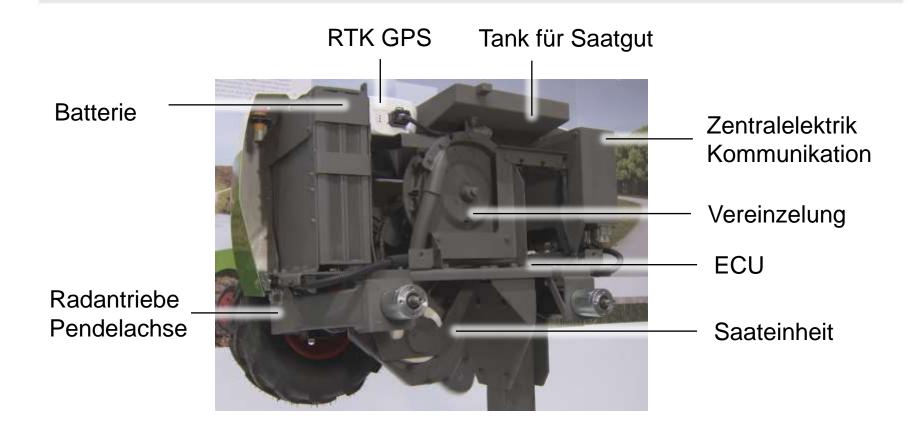


Aus MARS wird Xaver

05/2017 Xaver Prototyp

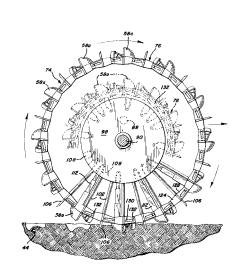
06/2017 Maisaussaat

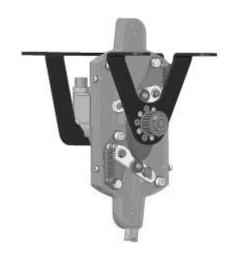
08/2017 Feldaufgang August

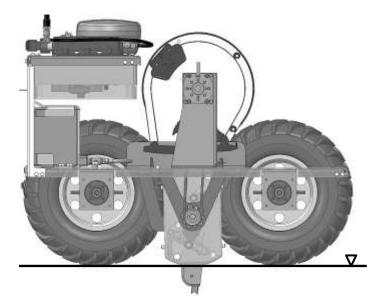

11/2017 Agritechnica

04/2019 Einsatz bei Pilotkunden

2017 2018 2019

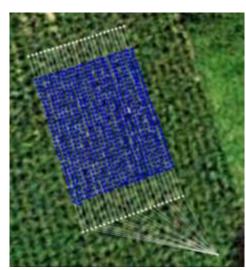

Xaver: Aufbau und Komponenten





Saateinheit

- Wiederbelebung eines alten Prinzips: Punch-Planting.
- Prinzip: Diskontinuierliche Bodenöffnung.
- Präzise: Kein Verrollen des Saatkorns.
- Effizient: Keine Furche, ein Arbeitsgang.

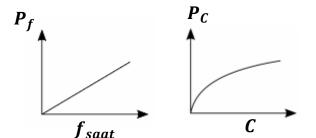


Cloud und Kommunikation

Cloud

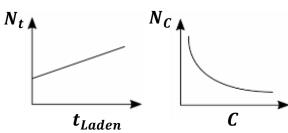
- OptiVisor
 Pfad-Planung, Überwachung, Neuplanung
- Datenmanagement
 Feldgrenzen, Saatparameter, Saatgutpositionen

Kommunikation


- Datenrate
 < 250 kBit/s (UMTS). Ca. 5 MByte Datenrate pro Hektar.
- Unkritische Echtzeitanforderungen Große Zeitschranken, Fail Safe

Produktivität, Leistung und Logistik

- Flächenleistung P
 - Einfluss Särate: $P_f \sim k * f_{saat}$
 - Einfluss Batteriekapazität: $P_{\it C} \sim {c \over c + k}$



Leistungsbedarf Schwarm (ca. 15 Roboter)< 8 kW

Rollwiderstand 20 kW Klimaanlage 8 kW

- Anzahl Roboter N bei konstanter Flächenleistung
 - Einfluss Ladezeit: $N_t \sim k_1 * t_{Laden} + k_2$
 - \circ Einfluss Batteriekapazität: $N_{\it C} \sim 1 + rac{k}{c}$

Agenda

- 1 Motivation
- 2 Konzept
- 3 Ergebnisse
- 4 Ausblick

Wegbereiter autonomer Feldroboter

Technologien

- Elektrifizierung: Kompakte und leichte Batterien, Motoren als Massenware, Energie vom Hof.
- Automatisierung: RTK-GNSS als Standard, günstige Rechenleistung, Sensoren bezahlbar.
- Konnektivität: Geeignete Kommunikationsstandards, ausreichende Netzabdeckung, günstige Cloud Services.

Prozesse

- Entwicklung: Kleine Teams, kurze Entwicklungszyklen.
- Investitionen: Wenig Teile, einfache Montage, wenig Werkzeuge.
- Plattform: Inhärent digitale Produkte, mechanische und digitale Plattformen.
- Markt: ermöglicht neue Geschäftsmodelle, z.B. Pay-per-Use

Startups Agrarrobotik

Vielen Dank. Fragen?

Project Lead Fendt Robotics thiemo.buchner@agcocorp.com

