

Modeling and Simulation of Disperse Systems (WZ1338)

Daniel Nasato, Ali Khajehesamedini, Gurmeet Kaur

daniel.nasato@tum.de, ali.khajehesamedini@tum.de, gurmeet.kaur@tum.de

Technische Universität München

Wissenschaftszentrum Weihenstephan

Lehrstuhl für Systemverfahrenstechnik

Freising, 7.April 2021

Disperse System

Definition

Heterogenous system in which one phase is distributed or dispersed within the continuous phase

Examples

Simulation of Disperse System

☐ Tracking the movement of particles as individuals based on newton's second law

☐ Tracking the evolution of distribution of population of particles/ droplets/ bubbles based on conservation laws

Discrete Element Method (DEM)

Static angle of repose

Research of Daniel Nasato

Bulk density and particle shape

Research of Daniel Nasato

Dynamic angle of repose

Research of Daniel Nasato

- Contact models, integration schemes, monitors and material calibration
- Examples and Exercises in Matlab to fix the concepts
- Learn open source DEM tool (ready for projects) and Commercial Rocky-DEM (industry standard)
 - Packing density, angle of repose (spheres and non-spherical particles), hopper discharge.

Population Balance Model (PBM)

Size distribution of lactose crystals

Kail, Briesen, Marquardt, ProcessNet JT, 2007

Size distribution of fat droplets in milk

Webpage: Swedish Institute of Food and Bioengineering

Size and shape distribution in bioprocesses

Research of Ali Khajehesamedini and Stefan Schmideder

Age distribution of Germany

First showcase in lecture

- Modeling and simulation of property distributed systems
- Properties: size, shape, age
- Extremely wide field of applications
- Simulation of growth, nucleation, breakage and aggregation

Premise of the course

■ Who should attend

Master students who are passionate about the simulation of disperse flows

Requirements

Fundamental knowledge of engineering mathematics

☐ Times of the sessions (12+12)

Lectures: Thursdays 14:00 - 15:30 (first session 15.04.21)

Solving exercises: Tuesdays 14:30 - 15:30 (first session 27.04.21)

Premise of the course (con't)

■ How to attend the sessions

TUM zoom (links are provided in TUM Moodle)

15. April - 21. April

Lecture 01: Introduction - 15.04 / 14h

Zoom-Meeting https://tum-conf.zoom.us/j/62627529507

Meeting-ID: 626 2752 9507

Kenncode: 694921

☐ How to access the content

TUM Moodle (recorded sessions, slides, exercises, filled notebooks, extra readings)

Evaluation

A report about 2 different simulation cases (75%) and a short presentation of the report (25%)

Schedule

Lecture	Exercise	Theme
01.W - 15.04.2021	-	Introduction to Modeling and Simulation of Disperse Systems
02.W - 22.04.2021	27.04.2021	Introduction to DEM
03.W - 29.04.2021	04.05.2021	Integration Schemes and Material model Calibration
04.W - 06.05.2021	11.05.2021	Boundary conditions, monitors and other granular models
05.W - 13.05.2021	18.05.2021	Holyday, no Lecture
06.W - 20.05.2021	25.05.2021	Neighbor lists and non-spherical particles
07.W - 27.05.2021	01.06.2021	Hands-on!
08.W - 03.06.2021	08.06.2021	Holyday, no Lecture
09.W - 10.06.2021	15.06.2021	Introduction to property distributed systems and PBM
10.W - 17.06.2021	22.06.2021	PBM: equation and rate equations for nucleation, growth, transport and volume change
11.W - 24.06.2021	29.06.2021	PBM: rate equations for aggregation and breakage
12.W - 01.07.2021	06.07.2021	Numerical Methods to solve PBE: Method of classes - aggregation and breakage
13. W - 08.07.2021	13.07.2021	Numerical Methods to solve PBE: Method of classes & Flux limiter - Growth and nucleation
14.W - 15.07.2021	20.07.2021	Numerical Methods to solve PBE: Quadrature Method of moments

Thank you for your attention

Looking forward to our first session on Wednesday 15.April at 14:00