πл

Scientific Computing with MATLAB 📣

Ali Khajehesamedini

ali.khajehesamedini@tum.de

Technische Universität München Wissenschaftszentrum Weihenstephan Lehrstuhl für Systemverfahrenstechnik Freising, Summer Semester 2021

ТШ

What you'll learn

✓ Matrix Labratory (variables, operations, functions, vectors, matrixes)

Name 🔺	Value	Class
A	4x4 double	double
B	[1;2;3;4]	double
h filename	'myfile.txt'	char
patient	1x1 struct	struct
b t	'Hello'	char
} val1	2x3 cell	cell
val2	[17,21,42]	double
x	325	double
y y	[9900,26025,39600]	uint32
z	-Inf	double

Order	Operator	Name
1	()	Parentheses
2	۸	Exponent
3	~	Negation (Logical "NOT")
4	* /	Multiply, Divide
5	+ -	Add, Subtract
6	< > <= >= == ~=	Relational Operators
7	&	Logical "AND"
8	1	Logical "OR"

	1	2		n _
1	a_{11}	a_{12}	• • •	a_{1n}
2	a_{21}	a_{22}	•••	$a_{2\boldsymbol{n}}$
3	a_{31}	a_{32}	• • •	a_{3n}
:	:	:	÷	:
m	a_{m1}	a_{m2}	•••	a_{mn}

max(x)
min(x)
mean(x)
median(x)
sum(x)
prod(x)
sort(x)

1	<pre>function [mean,stdev] = stats(vals)</pre>
2	% #codegen
3	
4	% calculates a statistical mean and a standard
5	% deviation for the values in vals.
6	
7 -	<pre>len = length(vals);</pre>
e –	<pre>mean = avg(vals,len);</pre>
9 -	<pre>stdev = sgrt(sum(((vals-avg(vals,len)).^2))/len);</pre>

✓ Data Visualization (2D & 3D plots)

✓ Control flow (if statements, for loop, while loop, switch case)

✓ Best Practices (code reviewing , debugging)

🖬 Profiler					
File Edit Debug De	esktop	Window Help			
Start Profiling Run this	s code:	awhile		*	Profile time: 16 se
Profile Summa Generated 01-Fe	ry b-201	0 09:37:33 usi	ng cpu time.		
Function Name	<u>Calls</u>	<u>Total Time</u>	<u>Self Time</u> *	Total Time (dark band	e Plot d = self time)
awhile	1	14.823 s	0.000 s		
awhile>calculate	3	14.823 s	14.823 s		

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from the process of profiling.

What you'll see

- ✓ Hetrogenuous data types (cell & structs)
- ✓ Working with Tables & TimeTables

cell 1,1	cell 1,2	cell 1,3
3 4 2 9 7 6 8 5 1	'Anne Smith' '9/12/94 ' 'Class II ' 'Obs. 1 ' 'Obs. 2 '	.25+3i 8-16i 34+5i 7+.92i
cell 2,1	cell 2,2	cell 2,3
[1.43 2.98	7 2 14 8 3 45	'text' 4 2 1 5
5.67]	52 16 3	

Date	1 Hour	2 Price	3 Volume
Date	Hour	FILE	volume
01/05/2015	1	-500	35234
01/05/2015	1	-499.9000	35234
01/05/2015	1	-499.1000	35233
01/05/2015	1	-499	35233
01/05/2015	1	-498	35231
01/05/2015	1	-497.9000	35231
01/05/2015	1	-497	35229
01/05/2015	1	-496.9700	35219
01/05/2015	1	-463.3000	35166
01/05/2015	1	-463.2000	35166
01/05/2015	1	-450	35146
01/05/2015	1	-425	34506

Age	Weight	Height	Smoker	SelfAssessedHealth Status	
38	176	71	✓	Excellent	4
43	163	69		Fair	
38	131	64		Good	
40	133	67		Fair	
49	119	64		Good	
46	142	68		Good	
33	142	64	\checkmark	Good	1
40	180	68		Good	
	Age 38 43 38 40 40 49 46 33 40	Age Weight 38 176 43 163 38 131 40 133 40 133 40 142 43 142 40 180	Age Weight Height 38 176 71 43 163 69 38 131 64 40 133 67 49 119 64 46 142 68 33 142 64	Age Weight Height Smoker 38 176 71 ✓ 43 163 69	Age Weight Height Smoker SelfAssessedHealth Status 38 176 71 Image: Excellent 43 163 69 Fair 38 131 64 Good 40 133 67 Fair 49 119 64 Good 46 142 68 Good 40 180 68 Good

٦Л

✓ Statistics & Data Analysis (curve fitting, analysis of corrolation)

- ✓ Solving Algebraic Equations
- ✓ Solving Ordinary Differential Equations
- ✓ Solving Differential Algebraic Equations

$$\begin{cases} 4x + 2y = 8 \\ 5x + 3y = 9 \end{cases}$$

Nonlinear System

$$3x^2 + 3y^2 = 27$$

 $3x^2 + 2y^2 = 23$

$$\frac{\text{Initial value problems (IVP)}}{\text{An initial value problem is an ODE together with some initial value.}}$$

$$\frac{\text{Example}}{\begin{cases} y'=y+1 \\ y(0) = 5 \end{cases} \quad \text{General solution to } y'=y+1 \text{ is } \\ g'(x) = C e^{X} - 1 \end{cases}$$

$$Y(t) = A(t) K(t)^{\frac{1}{3}} Ly(t)^{\frac{2}{3}}$$

$$\frac{d}{dt} K(t) = s Y(t) - d K(t)$$

$$\frac{d}{dt} A(t) = z A(t) La(t)$$

$$Ly(t) + La(t) = L$$

$$La(t) = l L$$

$$8$$

- ✓ Boundary Value Problems
- ✓ Partial Differential Equations

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &- 676000 \frac{\partial^2 u}{\partial x^2} = 0\\ \frac{\partial^2 w}{\partial t^2} &+ 65.12 \ \frac{\partial^4 w}{\partial x^4} = 0\\ \end{aligned}$$
Coupled partial differential equation,

$$\frac{\partial^2 u}{\partial t^2} &- 374004 \frac{\partial^2 u}{\partial x^2} - 1906 \ \frac{\partial^3 w}{\partial x^3} = 0\\ \frac{\partial^2 w}{\partial t^2} &+ 1900 \frac{\partial^3 u}{\partial x^3} + 67.38 \ \frac{\partial^4 w}{\partial x^4} = 0 \end{aligned}$$

✓ Image Processing (RGB, Gray, B&W; image filtering)

Premise of the course

Who should attend

Students who are passionate about data analysis & programming (experimentalists & modeling gurus)

Requirements

Fundamental knowledge of engineering mathematics

□ Style of teaching

First, showing Big-Picture in slides

Then, programming in "Matlab live editor" to see the results next to the code (practical

examples/exercises from life science technologies)

ТШП

Premise of the course (con't)

□ How to attend the sessions

TUM zoom (links are provided in the TUM Moodle)

□ Time of the sessions (14+12)

Lectures: Wednesdays 14:00 – 15:30 (first session 14.04.21)

Solving exercises: Mondays 14:00 - 15:00 (first session 19.04.21)

□ How to access the content

TUM Moodle (recorded sessions & slides/filled notebooks/exercises in the Matlab Drive)

Evaluation

30min oral exam (can be done in EN/DE/ES/PT)

Schedule

Teaching	Exercise Solving	Content
01.S: Wed 14.04	01. Mon 19.04	Matrix Laboratory
02.S: Wed 21.04	02. Mon 26.04	Data Visualization
03.S: Wed 28.04	03. Mon 03.05	Control Flows
04.S: Wed 05.05	04. Mon 10.05	Best practices
05.S: Wed 12.05	05. Mon 17.05	Advanced Data type I
06.S: Wed 19.05		Advanced Data type II
07.S: Wed 26.05	07. Mon 31.05	Data Analysis
08.S: Wed 02.06	08. Mon 07.06	Curve Fitting, Solving AE
09.S: Wed 09.06	09. Mon 14.06	Solving ODE, DAE
10.S: Wed 16.06	10. Mon 21.06	Solving BVP, PDE
11.S: Wed 23.06	11. Mon 28.07	Image Processing I
12.S: Wed 30.06	12. Mon 05.07	Image Processing II
13.S: Wed 07.07	13. Mon 12.07	Practice Makes Perfect
14.S: Wed 14.07		Practice Makes Perfect

Thank you for your attention

Looking forward to our first session on Wednesday 14th April at 14:00